

SUPPORTING INFORMATION

On the Enolization of Chiral α -Silyloxy Ketones with Dicyclohexylchloroborane. Application to Stereoselective Aldol Reactions

Marta Galobardes, Miguel Gascón, Marisa Mena, Pedro Romea,* Fèlix Urpí,* Jaume Vilarrasa

(1*R*,2*R*,4*S*)-4-*tert*-Butyldimethylsilyloxy-1-hydroxy-2-methyl-1-phenyl-3-pentanone (5a)

Colourless oil. R_f (hexanes/EtOAc 9:1) = 0.15. $[\alpha]_D$ = +4.2 (c = 1.0, CHCl_3). **IR** (film): ν 3500, 1713 cm^{-1} . **$^1\text{H NMR}$** (500 MHz, CDCl_3) δ 7.34–7.30 (4H, m, ArH), 7.26–7.21 (1H, m, ArH), 5.03 (1H, d, J = 3.7, PhCHOH), 4.14 (1H, q, J = 6.9, CHOTBS), 3.37 (1H, qd, J = 7.2, J = 3.7, COCHCH₃CHOH), 1.27 (3H, d, J = 6.9, CH₃CHOTBS), 1.05 (3H, d, J = 7.2, COCHCH₃CHOH), 0.90 (9H, s, SiC(CH₃)₃), 0.08 (3H, s, SiCH₃), 0.06 (3H, s, SiCH₃). **$^{13}\text{C NMR}$** (75.4 MHz, CDCl_3) δ 218.7, 141.7, 128.2, 127.2, 125.9, 74.6, 72.8, 46.9, 25.7, 21.0, 18.0, 10.4, -4.7, -5.0. **HRMS** (+FAB): m/z [M+H]⁺ found 323.2045, $\text{C}_{18}\text{H}_{31}\text{O}_3\text{Si}$ requires 323.2042.

(2*S*,4*R*,5*S*,6*E*)-2-*tert*-Butyldimethylsilyloxy-5-hydroxy-4-methyl-6-octen-3-one (5b)

Yellowish oil. R_f (hexanes/EtOAc 9:1) = 0.2. $[\alpha]_D$ = -6.3 (c = 1.3, CHCl_3). **IR** (film): ν 3475, 1709, 1640 cm^{-1} . **$^1\text{H NMR}$** (500 MHz, CDCl_3) δ 5.72 (1H, dqd, J = 15.7, J = 6.5, J = 1.2, HC=CHCH₃), 5.44 (1H, ddq, J = 15.7, J = 6.5, J = 1.7, HC=CHCH₃), 4.36–4.32 (1H, m, CHOH), 4.21 (1H, q, J = 6.9, CHOTBS), 3.19 (1H, qd, J = 7.2, J = 3.8, COCHCH₃CHOH), 1.70 (3H, ddd, J = 6.5, J = 1.7, J = 0.9, HC=CHCH₃), 1.30 (3H, d, J = 6.9, CH₃CHOTBS), 1.11 (3H, d, J = 7.2, COCHCH₃CHOH), 0.90 (9H, s, SiC(CH₃)₃), 0.07 (6H, s, Si(CH₃)₂). **$^{13}\text{C NMR}$** (75.4 MHz, CDCl_3) δ 217.7, 130.7, 127.7, 74.6, 72.2, 45.2, 25.7, 21.0, 18.0, 17.7, 11.1, -4.6, -5.0. **HRMS** (+FAB): m/z [M+H]⁺ found 287.2050, $\text{C}_{15}\text{H}_{31}\text{O}_3\text{Si}$ requires 287.2042.

(2*S*,4*R*,5*S*)-2-*tert*-Butyldimethylsilyloxy-5-hydroxy-4,7-dimethyl-3-octanone (5c)

Colourless oil. R_f (hexanes/EtOAc 9:1) = 0.3. $[\alpha]_D$ = +2.7 (c = 2.1, CHCl_3). **IR** (film): ν 3500, 1720 cm^{-1} . **$^1\text{H NMR}$** (500 MHz, CDCl_3) δ 4.21 (1H, q, J = 6.8, CHOTBS), 3.94 (1H, ddd, J = 9.3, J = 4.1, J = 2.9, CHOH), 3.08 (1H, qd, J = 7.2, J = 2.9, COCHCH₃CHOH), 1.85–1.70 (1H, m, CH(CH₃)₂), 1.55–1.42 (1H, m, CH_xH_yCH(CH₃)₂), 1.34 (3H, d, J = 6.8, CH₃CHOTBS), 1.14 (3H, d, J = 7.2, COCHCH₃CHOH), 1.15–1.00 (CH_xH_yCH(CH₃)₂), 0.92 (9H, s, SiC(CH₃)₃), 0.92 (3H, d, J = 6.8,

$\underline{\text{CH}_3}\text{CHCH}_3$), 0.91 (3H, d, $J = 6.5$, CH_3CHCH_3), 0.095 (3H, s, SiCH_3), 0.09 (3H, s, SiCH_3). ^{13}C **NMR** (75.4 MHz, CDCl_3) δ 219.2, 74.6, 68.8, 44.5, 43.1, 25.7, 24.5, 23.4, 22.0, 21.3, 18.0, 10.1, -4.6, -5.0. **HRMS (+FAB)**: m/z [M+H]⁺ found 303.2362, $\text{C}_{16}\text{H}_{35}\text{O}_3\text{Si}$ requires 303.2355.

(2*S,4R,5S*)-2-*tert*-Butyldimethylsilyloxy-5-hydroxy-4,6-dimethyl-3-heptanone (5d)

Colourless oil. \mathbf{R}_f (hexanes/EtOAc 9:1) = 0.2. $[\alpha]_D = +24.7$ ($c = 0.89$, CHCl_3). **IR** (film): ν 3530, 1702 cm^{-1} . ^1H **NMR** (500 MHz, CDCl_3) δ 4.19 (1H, q, $J = 7.0$, CHOTBS), 3.42 (1H, dd, $J = 8.8, 2.4$, $\underline{\text{CH}_3}\text{OH}$), 3.32 (1H, qd, $J = 7.15, 2.4$, $\text{COCHCH}_3\text{CHOH}$), 1.72–1.62 (1H, m, $\underline{\text{CH}_3}(\text{CH}_3)_2$), 1.32 (3H, d, $J = 7.0$, $\underline{\text{CH}_3}\text{CHOTBS}$), 1.11 (3H, d, $J = 7.15$, $\text{COCHCH}_3\text{CHOH}$), 1.00 (3H, d, $J = 6.6$, $\underline{\text{CH}_3}\text{CHCH}_3$), 0.90 (9H, s, $\text{SiC}(\text{CH}_3)_3$), 0.82 (3H, d, $J = 6.8$, CH_3CHCH_3), 0.07 (3H, s, SiCH_3), 0.06 (3H, s, SiCH_3). ^{13}C **NMR** (75.4 MHz, CDCl_3) δ 219.7, 76.0, 74.6, 41.3, 30.4, 25.7, 21.4, 19.4, 18.8, 18.0, 9.4, -4.7, -5.0. **HRMS (+FAB)**: m/z [M+H]⁺ found 289.2207, $\text{C}_{15}\text{H}_{33}\text{O}_3\text{Si}$ requires 289.2199.

(1*S,2R,4S*)-4-*tert*-Butyldiphenylsilyloxy-1-hydroxy-2-methyl-1-phenyl-3-pentanone (8a)

Colourless oil. \mathbf{R}_f (hexanes/EtOAc 95:5) = 0.2. $[\alpha]_D = -42.6$ ($c = 2.8$, CHCl_3). **IR** (film): ν 3500, 1721 cm^{-1} . ^1H **NMR** (500 MHz, CDCl_3) δ 7.70–7.60 (4H, m, ArH), 7.50–7.20 (11H, m, ArH), 4.74 (1H, d, $J = 8.1$, $\underline{\text{CH}_3}\text{OH}$), 4.25 (1H, q, $J = 6.9$, CHOTBDPS), 3.35 (1H, dq, $J = 8.1, 7.3$, $\text{COCHCH}_3\text{CHOH}$), 1.19 (3H, d, $J = 6.9$, $\underline{\text{CH}_3}\text{CHOTBDPS}$), 1.11 (9H, s, $\text{SiC}(\text{CH}_3)_3$), 0.77 (3H, d, $J = 7.3$, $\text{COCHCH}_3\text{CHOH}$). ^{13}C **NMR** (75.4 MHz, CDCl_3) δ 216.6, 142.2, 135.9, 135.8, 133.5, 132.8, 129.9, 129.8, 128.4, 127.8, 127.7, 127.6, 126.6, 76.4, 75.2, 48.4, 26.9, 20.4, 19.2, 14.6. **HRMS (+FAB)**: m/z [M+H]⁺ found 447.2353, $\text{C}_{28}\text{H}_{35}\text{O}_3\text{Si}$ requires 447.2355.

(2*S,4R,5R,6E*)-2-*tert*-Butyldiphenylsilyloxy-5-hydroxy-4-methyl-6-octen-3-one (8b)

Colourless oil. \mathbf{R}_f (hexanes/EtOAc 95:5) = 0.1. $[\alpha]_D = -8.4$ ($c = 1.1$, CHCl_3). **IR** (film): ν 3500, 1719 cm^{-1} . ^1H **NMR** (500 MHz, CDCl_3) δ 7.70–7.60 (4H, m, ArH), 7.45–7.35 (6H, m, ArH), 5.65 (1H, dqd, $J = 15.3, 6.5, 0.9$, $\text{HC}=\underline{\text{CHCH}_3}$), 5.36 (1H, ddq, $J = 15.3, 7.5, 1.7$, $\underline{\text{HC}}=\text{CHCH}_3$), 4.26 (1H, q, $J = 6.9$, CHOTBDPS), 4.15–4.05 (1H, m, $\underline{\text{CH}_3}\text{OH}$), 3.04 (1H, quintet, $J = 7.2$, $\text{COCHCH}_3\text{CHOH}$), 1.68 (1H, ddd, $J = 6.5, 1.7, 0.6$, $\text{HC}=\underline{\text{CHCH}_3}$), 1.24 (3H, d, $J = 6.9$, $\underline{\text{CH}_3}\text{CHOTBDPS}$), 1.11 (9H, s, $\text{SiC}(\text{CH}_3)_3$), 0.89 (3H, d, $J = 7.2$, $\text{COCHCH}_3\text{CHOH}$). ^{13}C **NMR** (75.4 MHz, CDCl_3) δ 216.6, 135.9, 135.8, 133.6, 132.8, 131.6, 129.9, 129.8, 128.6, 127.7, 127.6, 75.0,

74.9, 46.6, 26.9, 20.5, 19.2, 17.7, 14.3. **HRMS (+FAB):** m/z [M–OH]⁺ found 393.2253, C₂₅H₃₃O₂Si requires 393.2250.

(2*S,4R,5R*)-2-*tert*-Butyldiphenylsilyloxy-5-hydroxy-4,7-dimethyl-3-octanone (8c)

Colourless oil. **R_f** (hexanes/EtOAc 9:1) 0.5. **IR** (film): ν 3460, 1720 cm^{−1}. **¹H NMR** (500 MHz, CDCl₃) δ 7.70–7.60 (4H, m, ArH), 7.50–7.30 (6H, m, ArH), 4.25 (1H, q, J = 6.9, CHOTBDPS), 3.72–3.64 (1H, m, CHO_H), 2.96 (1H, qd, J = 7.2, J = 6.2, COCH_HCH₃CHOH), 1.84–1.78 (1H, m, CH(CH₃)₂), 1.32–1.28 (1H, m, CH_xH_yCH(CH₃)₂), 1.26 (3H, d, J = 6.9, CH₃CHOTBDPS), 1.11 (9H, s, SiC(CH₃)₃), 1.10–1.05 (1H, m, CH_xH_yCH(CH₃)₂), 0.96 (3H, d, J = 7.2, COCHCH₃CHOH), 0.90 (3H, d, J = 6.7, CH₃CHCH₃), 0.86 (3H, d, J = 6.5, CH₃CHCH₃). **¹³C NMR** (75.4 MHz, CDCl₃) δ 217.7, 135.9, 135.8, 133.6, 132.8, 130.0, 129.9, 127.8, 127.7, 74.9, 71.9, 46.9, 44.0, 26.9, 24.4, 23.8, 21.5, 20.8, 19.2, 14.4. **HRMS (+FAB):** m/z [M+H]⁺ found 427.2654, C₂₆H₃₉O₃Si requires 427.2668.

(2*S,4R,5R*)-2-*tert*-Butyldiphenylsilyloxy-5-hydroxy-4,6-dimethyl-3-heptanone (8d)

Colourless oil. **R_f** (hexanes/EtOAc 95:5) 0.10. $[\alpha]_D$ = +3.8 (c = 2.1, CHCl₃). **IR** (film): ν 3525, 1719 cm^{−1}. **¹H NMR** (500 MHz, CDCl₃) δ 7.70–7.60 (4H, m, ArH), 7.45–7.35 (6H, m, ArH), 4.26 (1H, q, J = 6.9, CHOTBDPS), 3.50–3.45 (1H, m, CHO_H), 3.22 (1H, quintet, J = 7.3, COCH_HCH₃CHOH), 1.72 (1H, heptd, J = 6.8, J = 4.3, CH(CH₃)₂), 1.24 (3H, d, J = 6.9, CH₃CHOTBDPS), 1.11 (9H, s, SiC(CH₃)₃), 0.96 (3H, d, J = 7.3, COCHCH₃CHOH), 0.92 (3H, d, J = 6.8, CH₃CHCH₃), 0.85 (3H, d, J = 6.8, CH₃CHCH₃). **¹³C NMR** (75.4 MHz, CDCl₃) δ 217.4, 135.9, 135.8, 133.6, 132.6, 129.9, 129.8, 127.7, 127.6, 77.7, 75.1, 43.9, 29.9, 26.9, 20.8, 20.1, 19.2, 15.5, 14.3. **HRMS (+FAB):** m/z [M+H]⁺ found 413.2521, C₂₅H₃₇O₃Si requires 413.2512.

Stereochemical proof of aldol diastereomer 5a.

Aqueous 48% HF (0.11 mL, 3.4 mmol) was added dropwise to a solution of **5a** (229 mg, 0.7 mmol) in CH₃CN (6 mL) and stirred at room temperature for 45 min. The mixture was partitioned between CH₂Cl₂ (200 mL) and 1 M NaOH (50 mL); the organic layer was dried (Na₂SO₄) and concentrated *in vacuo*. Purification of the resulting oil by column chromatography (hexanes/EtOAc 70:30) afforded (97 mg, 66%) pure (1*R,2R,4S*)-1,4-dihydroxy-2-methyl-1-phenyl-3-pentanone, **10**.

Colourless oil. \mathbf{R}_f (hexanes/EtOAc 70:30) 0.10. $^1\mathbf{H}$ NMR (200 MHz, CDCl_3) δ 7.35–7.20 (5H, m, ArH), 5.02 (1H, d, J = 5.4, PhCH_2OH), 4.29 (1H, q, J = 7.2, CH_3CHOHCO), 3.05 (1H, dq, J = 7.2, J = 5.4, COCH_2CH_3), 1.15 (3H, d, J = 7.2, CH_3), 1.04 (3H, d, J = 7.2, CH_3). $^{13}\mathbf{C}$ NMR (50.3 MHz, CDCl_3) δ 216.1, 141.7, 128.3, 127.7, 126.1, 73.3, 71.5, 48.6, 18.9, 12.4.

A solution of **10** (97 mg, 0.47 mmol) and NaIO_4 (994 mg, 4.65 mmol) in $\text{MeOH}/\text{H}_2\text{O}$ 2:1 (2.6 mL) was stirred for 2.5 h at room temperature. The mixture was partitioned between 0.5 M HCl (20 mL) and Et_2O (3 \times 30 mL); the combined ethereal extracts were dried (MgSO_4) and concentrated *in vacuo*. The residue was diluted with CH_2Cl_2 (20 mL) and extracted with 0.1 M NaOH (2 \times 20 mL); the aq. extracts were combined, cooled to 0 °C and 37% HCl was added carefully until pH \sim 1. The acidic mixture was extracted with CH_2Cl_2 (4 \times 30 mL); the organic portions were combined, dried (Na_2SO_4) and concentrated *in vacuo*. Spectroscopic and physical data of the resulting product (50 mg, 60%) showed that it was (*2R,3R*)-3-hydroxy-2-methyl-3-phenylpropanoic acid, **11**.

White solid. $[\alpha]_D$ = +32.4 (c = 1.0, CHCl_3) (lit.¹ $[\alpha]_D$ = +31.03 (c = 1.07, CHCl_3); lit.² $[\alpha]_D$ = +33.6 (c = 0.7, CHCl_3)). IR (KBr): ν 3477, 3200–2800 (broad), 1696 cm^{-1} . $^1\mathbf{H}$ NMR (500 MHz, CDCl_3) δ 7.40–7.25 (5H, m, ArH), 5.16 (1H, d, J = 4.0, CHOH), 2.84 (1H, dq, J = 7.2, J = 4.0, COCH), 1.14 (3H, d, J = 7.2, CH_3). $^{13}\mathbf{C}$ NMR (75.4 MHz, CDCl_3) δ 180.7, 141.0, 128.3, 127.6, 125.9, 73.4, 46.1, 10.2.

Stereochemical proof of aldol diastereomer **8d**.

Aqueous 48% HF (0.27 mL, 7.5 mmol) was added dropwise to a solution of **8d** (308 mg, 0.75 mmol) in CH_3CN (3 mL) and stirred overnight at room temperature. The mixture was partitioned between CH_2Cl_2 (100 mL) and sat. NaHCO_3 (2 \times 50 mL); the organic layer was dried (Na_2SO_4) and concentrated *in vacuo*. Purification of the resulting oil by column chromatography (hexanes/EtOAc 9:1) afforded (91 mg, 70%) pure (*2S,4R,5R*)-2,5-dihydroxy-4,6-dimethyl-3-heptanone, **12**.

Colourless oil. \mathbf{R}_f (hexanes/EtOAc 9:1) 0.10. $^1\mathbf{H}$ NMR (300 MHz, CDCl_3) δ 4.32 (1H, q, J = 7.0, CH_3CHOHCO), 3.61 (1H, dd, J = 8.4, J = 3.2, $\text{COCH}_2\text{CH}_3\text{CHOH}$), 3.11 (1H, dq, J = 8.4, J = 7.0, $\text{COCH}_2\text{CH}_3\text{CHOH}$), 1.81 (1H, heptd, J = 6.8, J = 3.2, $\text{CH}(\text{CH}_3)_2$), 1.36 (3H, d, J = 7.0, CH_3CHOHCO), 1.06 (3H, d, J = 7.0, $\text{COCH}_2\text{CH}_3\text{CHOH}$), 0.98 (3H, d, J = 6.8, CH_3CHCH_3), 0.92

¹ Masamune, S.; Choy, W.; Kerdesky, F. A. J.; Imperiali, B. *J. Am. Chem. Soc.* **1981**, *103*, 1566.

² Ghosh, A. K.; Cho, H.; Onishi, M. *Tetrahedron: Asymmetry* **1997**, *8*, 821.

(3H, d, J = 6.8, CH_3CHCH_3). **^{13}C NMR** (75.4 MHz, CDCl_3) δ 217.7, 77.9, 72.3, 43.4, 29.6, 19.9, 19.5, 14.6, 14.3.

A solution of **12** (91 mg, 0.52 mmol) and NaIO_4 (1.12 g, 5 mmol) in $\text{MeOH}/\text{H}_2\text{O}$ 2:1 (6 mL) was submitted to the same experimental procedure previously reported. Spectroscopic and physical data of the resulting product (28 mg, 37%) showed that it was (*2R,3R*)-3-hydroxy-2,4-dimethylpentanoic acid, **13**.

Colourless oil. $[\alpha]_D = -12.6$ (c = 1.4, CHCl_3) (lit.³ $[\alpha]_D = -17.6$ (c = 0.49, CHCl_3); lit.⁴ $[\alpha]_D = -14.3$ (c = 1.0, CHCl_3)). **IR** (film): ν 3450, 3300–2800 (broad), 1690 cm^{-1} . **^1H NMR** (300 MHz, CDCl_3) δ 3.45–3.40 (1H, m, CH_2OH), 2.69 (1H, quintet, J = 7.1, COCH_2CH_3), 1.85–1.70 (1H, m, $\text{CH}(\text{CH}_3)_2$), 1.25 (3H, d, J = 7.1, CH_3), 0.99 (3H, d, J = 6.9, CH_3), 0.94 (3H, d, J = 6.7, CH_3). **^{13}C NMR** (75.4 MHz, CDCl_3) δ 181.1, 76.6, 42.6, 30.8, 19.7, 16.1, 14.6.

³ Wang, Y.-C.; Hung, A.-W.; Chang, C.-S.; Yan, T.-H. *J. Org. Chem.* **1996**, *61*, 2038.

⁴ Van Draanen, N. A.; Arseniyadis, S.; Crimmins, M. T.; Heathcock, C. H. *J. Org. Chem.* **1991**, *56*, 2499.